Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this study, the triplet-state properties of BChl a in the Fenna-Matthews-Olson (FMO) light-harvesting complex were interrogated in the absence and presence of PscB, a subunit of the Cba. tepidum reaction center (RC), at room temperature and at 77 K. Application of nanosecond time-resolved transient absorption spectroscopy supports a model in which the pathway of the triplet excitation decay within FMO has two phases, with a fast lifetime of 2.58 μs (0.57 μs at 77 K) and a slow lifetime of 44.8 μs (44.1 μs at 77 K) in the FMO-only sample. Reconstitution of PscB and FMO, however, alters the spectral signatures of BChl a excitons uniquely at 815 nm in the steady-state spectrum at 77 K. Additionally, the triplet-state lifetime of BChl a in the FMO-PscB complex shortens by almost 40% to 28.1 μs at 77 K. The two FMO trimers asymmetrically interfacing with the homodimeric RC wire excitation energy from the chlorosome to the latter. Our data supports that the single central PscB, besides its redox active roles as the electron mediators to ferredoxin, is highly plausibly involved in fine-tuning the asymmetric excitation energy transfer from two branches of FMO to the RC in green sulfur bacteria.more » « lessFree, publicly-accessible full text available May 8, 2026
-
null (Ed.)Organometallic halide perovskite (MAPPbBr 3 ), Rust-based Vapor Phase Polymerization (RVPP)-PEDOT hole transporting layers and (RVPP-PEDOT)/MAPPbBr 3 dual-layer, deposited on fluorine doped tin oxide glass were studied at room temperature using steady-state absorption, time-resolved photoluminescence imaging and femtosecond time-resolved absorption spectroscopy. Application of these techniques in conjunction with diverse excitation intensities allowed determination of various optoelectronic properties of the perovskite film and the time constant of the hole extraction process. Spectral reconstruction of the bandedge absorption spectrum using Elliot's formula enabled separation of the exciton band. The binding energy of the exciton was determined to be 19 meV and the bandgap energy of the perovskite film was 2.37 eV. Subsequent time-resolved photoluminescence studies of the perovskite film performed using a very weak excitation intensity followed by a global analysis of the data revealed monomolecular recombination dynamics of charge carriers occurring with an amplitude weighted lifetime of 3.2 ns. Femtosecond time-resolved transient absorption of the film performed after excitation intensity spanning a range of over two orders of magnitude enabled determining the rate constant of bimolecular recombination and was found to be 2.6 × 10 −10 cm 3 s −1 . Application of numerous high intensity excitations enabled observation of band filling effect and application of the Burstein–Moss model allowed to determine the reduced effective mass of photoexcited electron–hole pair in MAPPbBr 3 film to be 0.19 rest mass of the electron. Finally, application of transient absorption on RVPP-PEDOT/MAPPbBr 3 enabled determination of a 0.4 ps time constant for the MAPPbBr 3 -to-PEDOT hole extraction process.more » « less
-
While there has been rapid progress in the performance of perovskite solar cells, the details of film formation, effect of processing parameters and perovskite crystal structure are still under discussion. The details of the X-ray diffraction (XRD) pattern of the tetragonal phase of CH 3 NH 3 PbI 3 perovskite existing at room temperature are often overlooked, with unresolved (002) (at 2 θ = 13.99° for CuK α and q = 0.9927 Å −1 ) and (110) (at 2 θ = 14.14° and q = 1.003 Å −1 ) peaks considered to be one peak at 14°, leading to an inaccurate estimation of lattice parameters. In this study, we use an electrospray deposition technique to prepare perovskite films at room temperature, oriented in (002) and (110) directions, with (002) as the preferred orientation. The results of a detailed study on the emergence of the two orientations during perovskite formation are reported. The effect of process parameters, such as substrate temperature during deposition and annealing temperature, on the grain orientation was established using XRD and grazing incidence wide angle X-ray scattering (GIWAXS). The study suggests that an irreversible crystal reorientation from (002) to (110) occurs at high temperature during rapid annealing, whereas a reversible crystal thermal expansion is seen during slow annealing. Finally, the results of the grain reorientation are correlated with the film properties, and it is shown that the film with the dominant (110) orientation has improved morphology and optoelectronic properties. The detailed structural investigation and characterization presented in this study are important for the precise determination of crystal orientation and achievement of desirable photovoltaic properties of the absorber material by carefully observing the adjacent crystal plane peaks in the XRD pattern of the perovskite thin films.more » « less
An official website of the United States government
